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MOnAL RSCPOflMrSEr FOR SEISMIC QUALIFICATION

By David W. Lindley', and Dr. J. Roland yOw2

TRODUCTION

- Nuclear power plant equipment is usually classified in the initial phase

seismic analysis as either rigid or flexible. Equipment is considered

ixible if the magnitude of the foundation motion can be magnified by

onant modal response of the equipment. It is considered rigid if all the

itural frequencies of vibration are greater than the resonant range of the

undation motion.

Rigid equipment can be analyzed using the peak acceleration of the

windation motion in a static analysis. However, flexible equipment requires

dynamic analysis to determine the magnitude and interaction of the various

odal responses. The detailed computation required for a dynamic analysis can

iquite costly. Often, an approximate method, Response Spectra Modal

lys's, is substituted.

,":This paper examines the use of Response Spectra Modal Analysis and

esents the analytical basis for a modification intended to reduce the

9pUting costs and increase the validity of the results.
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ileigh, N.C.
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In a Response Spectra Modal Analysis, phasing relationships among the 4 w

various natural modes of vibration are not determined. Only the peak

response of each mode is determined. Since all modes may not peak at the sam

time, the maximum response of the structure must be approximated by a

combination of the peak modal responses.

The most common method used to combine the peak modal responses is by

square root of the sum of the squares, SRSS. Closely spaced modes, (modes T

with frequencies within ten percent of each other), are combined absolutely-"

and included as a single term in the SRSS summation. This method is

statistically valid if each of the responses peaks randomly in time. The

responses of rigid modes violate this criterion because they all tend to peak

at the time that the base excitation peaks.

Investigations by Gwinn and Waal (3) show that SRSS responses of nearly

rigid structures are not conservative compared to time history responses.

Biswas and Duff (2) further demonstrate that SRSS responses close to support

points are lower than time history responses. The modified response

summation, MRS, presented in this paper improves the SRSS approximation by

allowing for simultaneous rigid response.

A second approximation is introduced by Response Spectra Modal Analysis

if all natural modes of vibration are not included in the summation. The,

costs of processing mode shapes can be reduced if only significant' modes are

included in the summation. However, no widely accepted method for determining

the significance of a mode has been established. The choice of modes is left-7-

to the engineer's discretion. In the modified response summation, only

flexible modes need be included in the summation. The SRSS approximation is

improved by reducing the possibility of overlooking significant modes.

A typical earthquake acceleration response spectrum is shown in Figure 1.

The spectrum shows that for high frequencies, the acceleration response

Fbecomes constant. This constant is known as the zero period acceleration,

-ZPA, and is equal to the peak base acceleration. The spectrum frequency where

the response is first considered constant is known as the cut-off frequency.

Modes with frequencies above the cut-off frequency are considered rigid.

Modes below the cut-off frequency are flexible.

The modified response summation being proposed by this paper utilizes a

static analysis based on zero period acceleration. The structural response

represented by the static analysis is indicated by the dashed area in Figure

21.7 The static analysis, in effect, applies the peak base acceleration to

every mode of the structure. The remaining structural response results from

the unused part of the flexible responses.

The MRS combination rule is given by

-R [Rs + (6 Rd)]'
. ..

where:

R the total response of the structure,

Rs the response of the structure to a static analysis based on ZPA

acceleration,

Rd the dynamic response of a flexible mode based on the square

root of the difference between the response spectra acceleration,

squared, and the ZPA acceleration, squared;

*the number of flexible modes.

The first term of equation (1) represents the peak response due to absolute

acceleration of the base. The second term approximates peak responses of

it
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4sl,
flegible modes due to accelerations relative to the base. Since the absolute 31

and relative accelerations need not peak simultaneously, an SRSS combination

'is used in equation (1).

_ th 14imittn case of no flexible modes, euntion (1) is reed'ed to 8 A

:-- simple static analysis. This complies with the normal method used for |

analyzing rigid equipment. In the limiting case of a single flexible mode,

equation (1) becomes equivalent to the normal dynamic response of a single

_ _ _ mode. The use of equation (1) insures that a Response Spectra Analysis will

_ _ _ __ =-_ > - always be more conservative than a ZPA static analysis.

The mathematical development of the MRS method is presented in the

- __ following sections. The development is presented for systems with no viscous '.
damping in order to simplify the analysis. Since an undamped system is the I
Olimiting case of a lightly damped system, the modal response summing rule

0 ____=_______which applies to the undamped system should also apply to systems with common-

ZPA …………--- …_._y used values of damping, usually less than ten percent of critical.

H ; i / i; : / /4 +The first step of the mathematical development is a review of the

° ,'i'i;,- , calculation of response spectra accelerations from single-degree-of-freedom

I5 g IS 3 40 50 -sYStems. It Is shown that the response spectra acceleration can be considered

Frequency In Hertz cut- of) -- :the sum of a "rigid" response equal to the base excitation acceleration and

FIG. I.- Typical Broadened Acceleration Response ao approximate dynamic response.

Spectra.
-.The next step of the development Is a review of a multi-degree-of-freedom

system response. The normal solution method is presented and then modified to

produce the MRS summation rule. Modal responses are divided into flexible and

f-rigid groupings. Using the results of the single-degree-of-freedom

development, the rigid grouping of modal responses are shown to reduce to a

'Simple static analysis. The remaining flexible modal responses are determined

uIng normal formulation with reduced response accelerations.
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Results from sample problems are presented following the mathematical,-:

development. Both SRSS responses and MRS responses are compared to the time-

history response.

RESPONSE SPECTRA FORMULATION

The response spectra value for a given frequency is equal to the maximum if

response to base excitation of a single degree of freedom system with a

natural frequency equal to the given frequency. Figure 2 illustrates a j
single-degree-of-freedom system with a fluctuating base displacement, b(t).

The system mass is given by m; the linear spring rate is given by k, and the

relative displacement of the mass with respect to the base is given by x(t).n-- 7

For each instant of time, the spring force must equal the inertia force- ,

that is,

I
. . .

r'..

IF

-kx(t) = m[x"(t) + b"(t)]

or, rearranging terms,

mx"(t) + kx(t) = -mb"(t)

where:

x"(t) = relative acceleration of the mass, and

b"(t) = acceleration of the base.

The base acceleration, b(t), can be represented over a fin

of time by a Fourier series as

b"(t) = a. + a, cos(,t - *i) + a, cos(. 2t - ..*+ ai cos(w

where:

w = i x (the fundamental frequency of the time interval), and

ai, it = the Fourier coefficients and phase angles of b(t).

8-2-6
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FIG. 2.- Single -Degree- Of-Freedom Oscillator
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The steady state solution of equations (3) and (4) for a system initially;s

at rest is given by

x(t)=_- 2 2 2 2 *-- Z (5)(2
Wn (w -W2)

where:

w = the natural frequency of the single-degree-of-freedom system, (k/m)'/2

The "rigid formulation of equation (3) is given by

kx5 (t) - -mb (t). (6)-4
; as

After substituting equation (4) for b"(t) and w for k/m, equation (6) becomes i

ax a, cos(wlt - 01) a Cos (wit (7)
X~M 2 .. (7)

-. The acceleration response, A(t), of the single-degree-of-freedom mass

is given by the sum of the relative acceleration, x"(t) and the base

'acceleration, b"(t). Dividing equation (2) by m gives

-A(t) - wZ x(t).
n

(10)

The undamped acceleration response spectrum value at wn is the maximum

absolute value of A(t). Utilizing equations (7), (8), and (9), equation (10)

can be written as

A(t) = As(t) + Ad(t)

where:

As(t) -b (t)- and

2 2

-Ad(t) = al cos(wlt - ¢1) , _ W ... + a cos(w t -fj) .
d $.2) (2Z2

-n1I n i

(11)

(12)

(13)

n n n

By comparing equations (7) and (5), it can be shown that the relative

displacement response can be considered the sum of a "rigid" response, x5(t)

and a "dynamic" response, xd(t), as

x(t) x5(t) + xd(t)(

where:

2 2
Ta, cos(wit - i) oi - 1COS(Wit -*) Wi 92

I dP)=- 22 2i .

,I -

:,,

Since earthquake excitation is dominated by low frequency components,

Ad(t) becomes small as wn becomes large. An acceleration response spectra

becomes constant above the cut-off frequency because, for rigid frequencies,

the peak value of Ad(t) is negligible compared to the peak value of As(t).

Since As(t) and Ad(t) each vary randomly in time, their respective

maximum values are not likely to occur simultaneously. The maximum magnitude

Of As(t) is given by the ZPA of an acceleration response spectrum. The value

Of the acceleration response spectrum represents the maximum magnitude of

A(t), (A(t), maximum). Assuming that A(t), maximum is approximated by an SRSS

Combination of As(t), maximum and Ad(t), maximum, then an expression for the

maximum magnitude of Ad(t) is given by

8-2-9
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Ad(t), maximum - [(A(t), maximum)Z - (ZPA)7j]/7.

For rigid modes, A(t), maximum, is equal to the ZPA, and Ad(t), maximum is

equal to zero. Equations (11), (12), and (14) will be used for developmen

multi-degree-of-freedom systems in the following sections.

MULTI-DEGREE OF FREEDOM RESPONSE

Equation (3), written in matrix form for an n degree-of-freedom-syste

is

l~ml l (t} +1 kJ l(t)} - -b (t) mn]ll

(nxn) '4(n~x3 + (nxn) Jnx nx3nx)

where:

[Im-] is the diagonal mass matrix,

k J is the symmetric stiffness matrix,

Lx(t)1 is the relative displacement vector,

b'(t) is the base acceleration, and

ill is a column vector of l's.

The equations represented by expression (15) can be de-coupled by

premultiplying by a transposed matrix of n orthogonal eigenvectors and ma

the following substitutions:

= M T [m [
(n~xn) (nxn) (nxn) (nxn)

[ KJ [f T [k 0
(n'x-n) (noxn) (nxn) [nxnJ

(i4). Ix t) I = [ * ]q(t)1
X1 (nl in(Dnj nxi)

here

7 1.a matrix composed of n orthogonal eigenvectors of expression (15),
0 ]T . [ 0 ] transpose, and

|q(t)) * generalized relative deflections.

Substituting expressions (16), (17) and (18) into expression (15) yields

(18)

[ * '; M lq'(t) + [K.J ]q(t)J = -b'(t) [ 0 1T [ m ] {l}
( nxn (nxl (nxn) (nxl) (nxn) (nxnx)( nxl)

(19)

, 1.1

I.. _... . I

Expression (19) represents a set of n independent, single-degree-of-

-freedom equations. Each equation in expression (19) is equivalent to a

...single-degree-of-freedom system subjected to a base acceleration equal to

..b (t) multiplied by a factor, ri. The solution to each equation for a system

-initially at rest is

ri Ai(t)
q(t) 2 (20)

where

-- i~xnj nxn) nxi)
(21:

-- Mi

= Ki/Mi, and (22:

Ai(t) * the absolute acceleration response at wi.

8-2-11
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Insertion of equation (20) into expression (18) yields that each

xj(t) * oil rlAl(t) + Oi2 rA2(t) + 0 rnAn(t)2 2
Wl W2 t

. -.

,,,,,
i. t

equation (20) into expression (24) yields

(233j0 A rfAf (t)0 Ur rlr(').?
; i1. am->-x(t) } * [ O+ rl 2

L - (nxL nxiE

Ht (Wxi) (jxl)

(25)

..s S M A yIn a Response Spectra Modal Analysis only the peak value of each Ai (t) int -_ g, - where:

equation (23) is known. Since all Aj(t) may not peak at the same time, the

peak value of xj(t) must be approximated by some combination of the terms in; f

equation (23) when each term is evaluated at its maximum value.

The most common method used to combine the responses in equation (23) is-

by SRSS. An inherent assumption of the SRSS method is that each term in

equation (23) will peak randomly in time. A more refined estimate of x1(t)

can be obtained by grouping into a single term the parts of equation (23)

which peak as the base excitation peaks. The new grouping can be achieved by

the steps that follow.

Expression (18) is separated into flexible and rigid portions as

I I 1= a column vector composed of the X

l f j for the flexible modes, and

.Fr r( ) = a column vector composed of the j

L r for the rigid modes.

values of r2Ai(t)/"2

values of riA2(t)/, 2riit)i

After substituting equation (11) and noting that Ad(t) is zero for rigid

modes, expression (25) becomes

IrfAs(t) + rfAfrd(ti +rAs(t) 7
t *f2 ort~~+~ j )2

. nxl nxt (r

(Xxi ) (xl )

ii

H

I,

"I

Ii

(26)

Ix(t)} = [ *f] {qf(t)J + O °rJ {qr(t)l
inxi) (nxfl (XXL) knxj (jxl)

where:

L 5 number of flexible modes,

j = number of rigid modes, (j+1 = n)

L CfJ - a matrix composed of the l flexible, orthogonal eigenvectors,

[ OrJ = a matrix composed of the J, rigid orthogonal eigenvectors,

{qf(t)} = a vector of the L flexible, generalized deflections, and

Jqr(t)J = a vector of the j rigid, generalized deflections.

(24) '

- ::-.1

where:

As(t) = the rigid value of the absolute acceleration response

(independent of modal frequency), and

Afd(t) = the "dynamic value of the absolute acceleration response for

each flexible mode, (dependent on the frequency of the mode).

8-2-138-2-12



Since, t+j = n, expression (26) can be expressed as -- |

x(tJ As(t) + One I f ,dft) (27)1nxij jnxn w; nxI 2

Q f

(nxi) (l) xi

The coefficient of As(t) in equation (27) can be evaluated by the steps that

follow.

Using equation (20) and expression (18), the solution for a multi-degree- ;

of-freedom system with an absolute acceleration response A1(t) at frequency wr -

can be expressed as

lx(t)I = 0 .(8

(nxn)

(nxi) .r

If a constant acceleration, G, is applied to the structure, then the absolute

acceleration response at each frequency is equal to G, and equation (28)

becomes

? -

(XInxn G. (29) a

(nxl)

..i

-For a constant acceleration, G, the value of {x(t)I can also be

i dtermined from a static analysis where

x k 1-' [-m | G . (30)
(nxn) (nxn) (nxi)

Equating expressions (29) and (30) shows that

k n n k ' nx1 (31)
F _nxn 1 ~nxnj nxn' Inx

(nxl)

Substitution of expression (31) into expression (27) produces the final

-result, that is

1 FrfAf,d(t)~
Ax(t * [ k ] m (1 1As(t) + Of (32)

nxl nxn nxn nxi nxt

A (txl)

Equation (32) represents a re-grouping of equation (23). The response

--given by the first term of equation (32) will peak as the base excitation

- peaks. It can be considered the rigid mode of the system which vibrates

in phase with the base.

The second term of equation (32) represents the dynamic contributions of

the flexible modes. It has the same form as the normal solution for multi-

degree-of-freedom systems given by equations (20) and (23). The only

-_differences are that only flexible modes are included in the summation, and

the response accelerations used are approximated by equation (14). Each of

the dynamic contributions can be considered to vibrate randomly in time.

*1

I

LI

8-2-14 8-2-15
: ;. = ,r

. :4

,*1



Equation (32) has been regrouped into a form where each term vibrates

independently. An SRSS combination of the terms can be applied to approximate

the maximum system response. The resulting MRS summation method is given by

PqtAltinn !1).

Examples of the MRS method resulting from a square root sum of the

squares combination of the new grouping are presented in the following

section.

EXAMPLE, HORIZONTAL PIPE RESTRAINT

The horizontal pipe restraint shown in Figure 3 is used to demonstrate

the modified response summation method. Eight parallel pipes, each weighing

386.4 lbf. (1719 N), are restrained by a single tapered member. The

analytical model is presented in Figure 4. Three different models are created

by varying the stiffness, K. of the restraint as 5000 lbf/In (876 N/mm),

10 000 lbf/in (1752 N/mm), and 20 000 lbf/in (3504 N/mm). The models are

referred to as 1, 2, and 3, respectively.

The stiffness of model 2 is selected to produce an equal number of

flexible and rigid modes of vibration. Model 1 is more flexible than model 2

while model 3 is more rigid. The natural frequencies of each model are given

in Table 1.

Each analytical model has been subjected to the north/south component of

the 1940 El Centro earthquake. A time history analysis as well as MRS and

SRSS Response Spectra Modal Analyses were performed for each model. The SRSS

summation included all modes. The El Centro response spectra for 2 percent

critical damping was used in each response spectra analysis. Each mode in the ,-

.7 time history analysis was given 2 percent critical damping by use of a damping

8-2-16
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FIG. 3.- Horizontal Pipe Restraint System Example
(0in. -25.4mm)
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|< - 80 in. each at 10 in. - I

2 3 4 5 6 7 838K 7K 6K 5K 4 3 2

FIG. 4.- Analytical Model of the Pipe Restraint Syste
( tin. - 25.4 mm)
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ix composed of terms generated from a Caughey series (I). The

acceleration response spectrum value for each frequency is included in Table I.

ZPA acceleration for the response spectra was taken as .33 G starting at 34 Hz.

Results fror= th^ anayes of the three mndels are tabulated in Tables 2

and 3. Acceleration responses of the pipes are given in Table 2. Axial loads

v in the pipe restraint are given in Table 3. The results of model 2 are

typical and are plotted as fraction of time history response in Figures 5

and 6. It should be noted that the fraction of time history acceleration

response at fixed points is identically 1 for an MRS summation and identically

; Ofor an SRSS summation.

-DISCUSSION OF THE RESULTS

An examination of the results shows that the MRS predictions of response

are, in general, comparable or better than the SRSS predictions when compared

to time history response. Both methods predict restraint load responses

more accurately than they predict pipe acceleration responses. The

acceleration responses of the SRSS method prove to be more biased by fixed

dpoints than those generated by the MRS method. The SRSS predictions for the

most flexible model show slightly better results than the MRS predictions at

'--points far away from the fixed end of the restraint. As the system becomes

more rigid, the predictions of the SRSS method become less accurate. The

[d redictions of the MRS method show greater stability over the entire frequency

range.

PRACTICAL APPLICATIONS

7, The intent of the MRS method Is to reduce the required computation while

increasing the accuracy of modal summation predictions. The MRS method

8-2-19
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TAL 2.-Pa AboueAclrto epneingsa ahNd ftePp

:Retan Model

TABLE l.--Natural Frequencies of Models 1, 2, and 3, and the Corresponding

Response Spectra Accelerations From the North/South Component of the 1940 El

Centro Earthquake

Model 1 Model 2 Model 3

Mode Frequency Acceleration Frequency Acceleration Frequency Acceleration.
Number (Hertz) (g (Hertz) (g(Hrz ()

1 4.6 1.13 6.6 1.41 9.3 .61

2 10.7 .58 15.1 .46 21.4 .38

3 16.9 .42 23.9 .37 33.8 .33

4 23.2 .37 32.9 .39 46.5 .33

5 29.9 .38 42.2 .33 59.7 .33

6 36.9 .33 52.2 .33 73.8 .33

7 44.7 .33 63.1 .33 89.3 .33

8 53.8 .33 76.1 .33 107.6 .33

8-2-20

- Response Node 2 Node Node Node Node Node NodefMethod 1 2 3 4 5 6 7 8

-- (a) Model 1

Time history- .398 .490 .636 .777 .942 1.143 1.397 L1.852
-TR357 ' .T _9 - -.3: i -.5jr .773 .933 1:.1W2 173-9 -I 1.7T2-% Tlmehistory_ 49 74 84 93 98 100 100 L 9273MRS .76T 438 :.5-917 770 -. 9r 1.172 r. 3Z4 17.657

-' % Time history 92 94 93 97 99 99 98 90

(b) Model 2

Time histozy_ .354 .521 .717 .930 1.173 L1.423 P1.685 L1.986
SRSS 1T .-47137 F .6297 . 867 -.1l8- .147 f17T4 F27105

' -%Time history 61 79 88 _ 93 96 99 103 106MRS j7.376 .500 -.6777 .889 17.133 1:1.405 1.712 72.060% Time history 106 96 94 96 97 99 1 102 1 104

(c) Model 3

j Time history .308 .327 .406 .477 .541 .625 .713 .840!SRS … .- -- -T35 -2- -23TF74-- 7 -7.5T976 37- 9-
RS Time histoy| 44 68 77 _ 85 94 100 106 111

MRS - -- .337 r.3-S9 t .398- K .4-537 r .522r .-6-04- r .7-02-r .825
% Time history 109 110 98 95 96 97 98 98

t=

8-2-21
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TABLE 3.--Peak Axial Load in Pounds at Each Spring of the Pipe Restraint

Models

Response Spring Spring Spring Spring Spring Spring Spring Spring
Method 1 2 3 4 5 6 7 8

(a) Model 1

Time history 2608 2541 2403 2189 1953 1656 1254 1 715
-RSS 277 291' 2X91 - -z1T 11M -1s11 1T8 -r66

S Time history 99 99 100 101 100 97 95 93 :-
R -2…66 2-6- 2I1 220'9 1-3- Y58§ 1T6T - 46:

S Time history 102 101 101 101 gg 96 93 90W

(b) Model 2

Time histoZy 3373 3240 3039 2762 2403 1955 1411 765
…§R9S 371T 3T4 2-9T - 276 - 2'T37 2 71 9 - - W -

S Time history 95 97 99 100 102 103 105 106
MRS 3-8-- 3-8-- 3 038 276 2X29 l -`9T -24T2 Y799'6
S Time history 97 98 99 101 101 102 103 104

(c) Model 3

*i~

I.i

I 1 ,

, .

7J.
8I 2 3 4 5 6 r

Mass Number of Analytical Model

FIG. 5.- Absolute AccelerOtiOn Response For Pipes
of Model 2.

Time histoLy 1551 1456 1333 1181 1005 804 586 325
…R…S -- 18… … …I767 -…1786 | 1T85 | 11…4 | …6… | …4… | …6…

S Time history_ 89 93 97 100 104 108 109 1 111
MRS 1-3§ 71T37 1717 1 11rg 1 1W1 1 t1E 1 T89 1 1
S Time history 99 99 99 100 101 102 101 98

fi i

. :

Note: 1 lbf - 4.45N

8-2-23
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presented above can be implemented without modification of most existing,

general purpose, finite element computer codes. The need to determine the

significance of high frequency modes is eliminated. However, if a systemt contains many flexible modes, the determination of modal significance is still

required. Suggested additional work would include developing a quantitative

definition of modal significance.

c- -- 0 = CONCLUSIONS

o _A modified response summation rule, MRS, has been proposed as an

.90 __alternative to the SRSS rule for combining modal responses from a Response

Spectra Modal Analysis. The MRS method reduces the cost of the analysis

because only flexible modes are required. It increases the certainty of

c .70 M Medresults by eliminating the need for selection of significant high

frequency modes and allowing for simultaneous rigid response. Comparisons
s60 0---o8RSS Method

of the MRS method and the SRSS method with time history response show that the

50 MRS method is, in general, more reliable than the SRSS method.

Restraint Member of Analytical Model
FIG. 6.- Axial Load Response For Restraint Members
of Model 2.
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APPENDIX II.- NOTATION

The following symbols are used in this paper:

a * coefficient of a Fourier series;

- A =a ue accclcration response of a mode.

b(t) time dependent base displacement;

G * arbitrary constant acceleration;

k * spring stiffness;

K - generalized spring stiffness;

m * mass;

M = generalized mass;

MRS - modified response summation;

q(t) = time dependent generalized relative displacement;

R - response quantity;

SRSS *square root sum of squares response summation;

t * time;

x(t) -time dependent relative displacement;

ZPA - zero period acceleration of response spectra;

r = modal participation factor;

* - phase angle of a Fourier series;

= mode shape eigenvector;

= radian frequency;

" twice differentiated with respect to time;

= column vector;

= matrix;

j - diagonal matrix;

x ) = matrix dimensions.

I
I.
I,

<I

* I

'I
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Subscripts

d , dynamic portion of a response;

f -flexible quantity (natural frequency below the cut-off frequency);

i =eninting inMdPY

J -number of rigid modes;

n -total number of degrees of freedom;

r - rigid quantity (natural frequency above the cut-off frequency);

s = quantity based on "rigid" formulation;

n = natural frequency;

1,-,3... ith term of Fourier series.

Superscripts

T = matrix transpose.

Uncertainties In Seismic Design
Of Equipment Mounted Subsystemsa

] I- By L. D. Gerdes1, and R. P. Kassawara2

-¶ IINTRODUCTION

Purpose

.-- This paper investigates the conservatism associated with the accounting

.-for uncertainties in system properties by artificial seismic response spectrum

peak broadening at intermediate steps of a properly executed series of sub-

structure analyses. The substructures involved are the containment building

and the large, massive Reactor Coolant System (RCS). The uncertainties

of concern are primarily those associated with the knowledge of the frequencies

of the reinforced concrete containment internal structure. The focus of this

paper is on the effects that this process of peak broadening has on light,

- uncoupled equipment attached to the RCS. The effects of intermediate peak

broadening are compared to those of performing a single coupled model

analysis of the building - RCS and then broadening peaks at the conclusion

of the analysis. Comparisons are also made to the procedure of actually

varying the parameters of the building model to account for uncertainties without

- i broadening peaks at all. It is shown that the latter two procedures are reasonable

methods for accounting for uncertainties in building response and that they

_ yield similar results while the procedure of intermediate peak broadening can

be unreasonably conservative and, in some instances, unconservative.TI
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